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1 Background

The methodologies described in this paper belong to a small subset of a broader set of methods
developed to produce adjusted estimates of adult mortality for countries in the Latin American
and Caribbean (LAC) region covering 150-160 years, from 1850 to 2010. This period encompasses
approximately the end of colonial rule, the aftermath of wars of independence from Spanish and
Portuguese domination, the establishment of nation states, integration into a world system and
the world economy, and all developments that unfolded following World War II.1 In this paper we
focus only on adjustments of life tables for the post-1950 period. To do so we avail ourselves of
mortality data consisting of yearly deaths by age and gender and population censuses. Because
methods to adjust for completeness of death registration are well-known we focus on the description
of relatively new methods to adjust for adult age misreporting. We then combine these two methods
in an evaluation study designed to identify an optimal strategy to construct adjusted life tables for
adult ages.

The paper is in six sections. In the first section we briefly define problems caused by defective
vital statistics and census enumerations. In the second section we propose a model to represent
the nature of adult age misreporting and in the third section we describe a methodology to detect
and adjust for adult age misreporting. The fourth section describes an evaluation study designed
to assess the performance of techniques to correct mortality indicators for both errors of coverage
and age reporting. The fifth section discusses results from the evaluation study. The last section
summarizes results and argues that adjustment of imperfect mortality data is subject to uncertainty
and that treatment of the adjusted data is best carried out with models that account for uncertainty.

2 Errors affecting measures of adult mortality

The post-1950 mortality data in LAC is limited by defective coverage and adult age misreporting.
By and large, observed death counts are a variable fraction of the ‘true’ number of deaths that take
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place at a particular time as they exclude events that, for a number of reasons, are never recorded.
Since population censuses too are normally affected by coverage problems, mortality rates computed
with the raw data may contain smaller net errors that would be expected otherwise. In general,
however, the observed mortality rates underestimate mortality levels, particularly at very young
and old ages. We use the term relative completeness when we speak of ratios of observed to true
mortality rates.

Table 1 displays estimates of relative completeness of adult (over 5 years of age) and, for
comparison, those corresponding to infant (age 0) and early child (ages 1-4) death registration in
a sample of LAC countries over two different periods of time. The figures in this table confirm
that the quality of the information is poorer at very young ages and that, although there is a clear
universal trend toward improvement, an important fraction of countries still show signs of deficient
registration even quite recently.

Imperfect relative completeness of death registration is not the only problem affecting estimates
of mortality. An important domain of errors involves age misreporting and the most insidious
manifestation is systematic over (under) reporting. Vital and census statistics in LAC countries
are, almost without exception, affected by age overstatement, particularly at ages over 40 or 45
(see below). When the (true) age distribution of a population is roughly exponential in nature —as
it always is in stable and quasi stable populations—systematic age overstatement of populations
induces downward biases in mortality rates at older ages. These biases are not offset when there is
an equal propensity to overstate ages at death. The reason these two type of errors do not cancel
each other out is that while both adult mortality rates and adult population age distributions are
roughly exponential, one slopes upwards (mortality rates) whereas the other slopes downwards
(population). Matters are made worse when, as is almost always the case, the rate of decrease of
population with age (natural rate of increase in a stable population) is several times lower than
the rate of increase of adult mortality rates (rate of senescence in Gompertz mortality regimes).
The consequence is that unless the propensity to overestimate ages at death is much higher than
the propensity to overestimate ages of population, observed mortality rates will contain downward
biases. If left uncorrected, the resulting life tables will offer a misleading portrayal of the curvature
of mortality at older ages, suggesting the existence of slower rates of senescence or heavy influence
of selection due to changing frailty composition. As the quality of vital registration and census
enumeration improves, the magnitude of these biases tends to decrease and the entire history of
observed life tables will erroneously suggest trends in old age patterns of mortality and even relative
acceleration of the rates of mortality decline at older ages.

Unlike problems created by age heaping, distortions caused by systematic age misstatement
cannot be repaired by restoring the original age distribution standard using computations that
rely on safe assumptions. Systematic age misstatement is altogether different since it is harder to
diagnose and, as we show below, its treatment requires additional knowledge of two functions: (a)
the conditional (on age and gender) propensity of individuals to exaggerate (decrease) the true age
and (b) the conditional (on age and gender) distribution of the difference between the correct and
declared age. To solve the problem we propose generalizations of an existing procedure to identify
the presence of age misstatement, formulate a new method to estimate functions describing (a) and
(b) from observables, and define an algorithm that adjusts observed adult mortality rates for both
faulty coverage and systematic age misreporting.

Table 2 displays estimated biases in mortality rates at ages over 45 in a sample of country-years
used in our analysis and the corresponding errors in life expectancy at age 60.

The problems generated by defective completeness of death registration as well as alternative
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Table 1: Relative completeness of deaths registration in the LAC countries: 1920-2010.

Country
Period 1900-1949 Period 1950+

Mid-Year Age 0 Age 1-4 Age 5+ Mid-Year Age 5+

Argentina 1914 0.968 0.865 0.939 1953 0.974
2005 0.995

Brazil 1985 0.885
2005 0.996

Chile 1925 0.867 0.829 0.852 1956 0.961
1945 0.867 0.829 0.934 2006 0.980

Colombia 1944 0.821 0.815 0.749 1957 0.790
2008 0.800

Costa Rica 1927 0.901 0.922 0.893 1956 0.918
1938 0.901 0.922 0.893 2005 0.975

Cuba 1925 0.806 0.893 0.800 1961 0.890
1948 0.806 0.893 0.870 2006 0.989

Dominican Republic 1942 0.476 0.451 0.487 1955 0.500
2006 0.604

Ecuador 1956 0.738
2005 0.805

El Salvador 1940 0.554 0.776 0.721 1955 0.700
2008 0.714

Guatemala 1945 0.714 0.898 0.784 1957 0.888
2005 0.940

Honduras 1942 0.542 0.551 0.495 1955 0.518
1947 0.542 0.551 0.500 1989 0.750

Mexico 1925 0.843 0.822 0.752 1955 0.860
1945 0.843 0.822 0.883 2005 0.959

Nicaragua 1945 0.526 0.545 0.498 1956 0.456
2007 0.561

Panama 1945 0.837 0.757 0.829 1955 0.839
2005 0.853

Paraguay 1956 0.601
2006 0.681

Peru 1950 0.490
2008 0.533

Uruguay 1908 0.844 0.822 0.879 1969 0.960
2007 0.996

Venezuela 1938 0.833 0.857 0.846 1955 0.866
1945 0.833 0.857 0.855 2006 0.895
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Table 2: Biases due to age overstatement.

Country Mid-Year
Unadjusted Adjusted*

E(45) E(60) E(45) E(60)

Argentina 1953 25.96 15.39 25.29 14.55
2005 30.02 17.96 29.33 17.15

Brazil 1985 28.55 17.61 27.62 16.51
2005 31.27 19.77 30.23 18.58

Chile 1956 24.44 14.57 23.72 13.64
2006 33.20 20.45 32.16 19.33

Colombia 1957 27.34 16.68 26.46 15.67
2008 35.09 22.29 33.86 20.96

Costa Rica 1956 29.08 17.55 28.10 16.46
2005 34.96 22.40 33.78 21.13

Cuba 1961 30.13 18.15 29.18 17.08
2006 33.46 20.94 32.56 19.95

Dominican Republic 1955 33.62 22.44 31.91 20.52
2006 38.35 25.76 36.41 23.68

Ecuador 1956 28.75 17.98 27.77 16.83
2005 37.42 25.23 35.94 23.62

El Salvador 1955 27.64 17.54 26.69 16.42
2008 32.79 21.74 31.85 20.62

Guatemala 1957 24.44 15.06 23.68 14.07
2005 31.39 20.22 30.42 19.10

Honduras 1955 30.55 20.37 29.14 18.64
1989 37.33 25.06 35.61 23.17

Mexico 1955 26.57 16.69 25.80 15.71
2005 33.04 21.13 31.97 19.95

Nicaragua 1956 32.09 21.05 30.61 19.37
2007 36.23 24.05 34.71 22.41

Panama 1955 28.93 17.67 27.87 16.45
2005 35.92 23.18 34.65 21.81

Paraguay 1956 32.97 20.81 31.73 19.44
2006 34.84 22.17 33.60 20.84

Peru 1950 30.61 20.64 29.47 19.25
2008 39.37 26.32 37.66 24.52

Uruguay 1969 26.72 15.47 26.11 14.69
2007 30.35 18.17 29.85 17.57

Venezuela 1955 27.49 16.81 26.47 15.64
2006 32.75 20.94 31.53 19.59

* Adjusted for age misreporting
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adjustments procedure to deal with it are well-known. Much less is known about the nature and
impact of age misreporting. In the section below we propose a methodology to identify the presence
of these errors and to correct them.

3 Systematic age misreporting

3.1 Setup

We begin with a few basic definitions. Let θox be the average conditional probability that individuals
aged x overstate their age in a census and θux the conditional probability of understating their age.
Then (1 − θox − θux) is the probability of an accurate age statement. Individuals who over(under)
state their age do so by choosing, not always randomly, the age declared and observed in the census.
This age could be n > 0 years removed from the true age. As we show below, it suffices to let n
range between 1 and 10+ since the frequencies for values of 10 years and above are exceedingly
small, e.g. individuals rarely over(understate) their age by more that ten digits. Let ρox(n) be
the average conditional probability that individuals aged x who overstate ages will do so by n
years with an analogous definition for the probabilities for age understatement, ρux(n) and with∑

n ρ
u
x(n) =

∑
n ρ

o
x(n) = 1. To compute the observed number at age y, Poy, we consider the true

number at that age P Ty , and apply the conditional probabilities defined above:

P oy = P Ty (1− θox − θux) +

j=10∑
j=1

P Ty−jρ
o
y−j(j)θ

o
y−j +

j=10∑
j=1

P Ty+jρ
u
y+j(j)θ

u
y+j . (3.1)

This expression can be generalized for all ages between 0 and 100 in compact matrix notation:

Πo = ΘΠT (3.2)

where Πo is the (101x1) observed population vector, ΠT is the (101x1) true population vector and
Θ is a 101x101 square matrix of “transition” probabilities, e.g. the probabilities of migration into or
out of single year age-groups. In particular, the diagonal of Θ contains the probabilities of correctly
declaring ages, (1−θox−θux), and entries in the off-diagonal row k for columns k−1, k−2, . . . , k−10
are the values ρoy−1(j)θ

o
y−1, . . . , ρ

o
y−10(j)θ

o
y−10 whereas those in columns k+1, k+2, . . . , k+10 are the

values ρuy+1(j)θ
u
y+1, . . . , ρ

u
y+10(j)θ

u
y+10. One can retrieve the matrix with the true age distribution

of the population after pre-multiplying the previous expression by the inverse of Θ−1, that is

Θ−1Πo = ΠT , (3.3)

an operation that requires full knowledge of the matrix Θ. As we show below, demographers have
only superficial information about the nature of this matrix in LAC countries or anywhere else
for that matter (but see Bhat (1990)). In the absence of precise knowledge of the probabilities
contained in the matrix one could adopt shortcuts, simplifications that circumvent knowledge gaps
but that, as shown below, lead to identification problems, most of which translate into inability to
specify an invertible matrix of transition probabilities.
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3.2 Observed patterns of age misreporting

What do we know about age misreporting in population and death counts in LAC and in other
countries? There is an extensive literature on general errors in age reporting (Ewbank, 1981;
Chidambaram and Sathar, 1984; Kamps E., 1976; Nuñez, 1984) as well as on systematic age mis-
statement, mostly adult age overstatement, in population counts. And while a fair number of these
studies uncover evidence of overstatement in low income countries (Mazess and Forman, 1979;
Grushka, 1996; Bhat, 1987, 1990; Del Popolo, 2000; Dechter and Preston, 1991) or in US migrant
(Hispanic or Hispanic origins) groups (Rosenwaike and Preston, 1984; Spencer, 1984), there is a
body of literature that identifies patterns of age overstatemet in high income countries as well (Ho-
riuchi and Coale, 1985; Coale and Kisker, 1986; Condran et al., 1991; Preston et al., 2003; Elo and
Preston, 1994). In the US, for example, age overstatement is one of the factors that could explain
the so called Black-White mortality crossover, whereby African American mortality rates dip below
those of their White counterparts at very old ages (over 70). And while the recurrent idea of heavy
selection due to frailty has not been completely discarded, the most recent investigations suggest
that overstatement of ages in the population (and also deaths) among African American more so
than among Whites accounts for a substantial part of the mortality crossover (Elo and Preston,
1994). The Black-White mortality crossover is just an extreme example of the damage that age
misreporting can inflict on estimates of adult mortality. As others before us have done (Dechter
and Preston, 1991; Grushka, 1996; Bhat, 1987, 1990), we will show that age overstatement is also
an important source of error in LAC countries.

Partial information on the matrix Θ has been obtained mostly from studies involving record
linkages (Elo and Preston, 1994; Preston et al., 1996; Rosenwaike and Preston, 1984; Rosenwaike,
1987), post enumeration surveys (Ortega and Garcia, 1985) and comparisons of two independently
gathered data sources that should produce the same outcomes (Bhat, 1990). In all these studies,
however, the information is either aggregated in five-year age groups or applies to populations with
levels of education that are much higher than those in LAC countries. Lack of age detail is prob-
lematic since computation of conditional probabilities in coarse age groups rests on approximations
that, if violated, are generally harmful to the accuracy of estimates. Using a transition matrix
appropriate for a population with higher or lower levels of education or literacy than the target one
may lead to distortions since age misstatement is strongly associated with levels of education.

3.3 Misreporting of ages of population

To circumvent the foregoing problems we take advantage of a 2002 evaluation study launched by
the Central American Center for Population at the University of Costa Rica. The program was
designed to assess the quality of information of death registration and the accuracy of the 2000
census counts2. One of the components of this study was a linkage of an age stratified sample
of 9,113 individual census records with the national voter registers, a database that contains age
information from birth certificates. A total of 7426 records were matched corresponding to 81.5%
of the original sample and 86.6 % of the non foreign born part of the sample. The final data set
contains individuals classified by gender, education and other traits, and by ‘true’ and declared
age. To estimate the entries of matrix Θ we proceeded in two steps:

i Estimation of probabilities of age over and understatement, θox(V ) and θux(V ) where V is a
vector of individual characteristics, including age: We first estimate a logistic model for a

2We are grateful to Drs. Gilbert Brenes and Luis Rosero Bixby from the Central American Population Center at
the University of Costa Rica for having provided tabulations we used in this study.
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binary variable set to 1 when there is over (under) statement and zero otherwise. Initially
the model specifies a vector of covariates including age, age squared, urban/rural residence,
gender, and education. The sample includes individuals aged 50 and over since at younger
ages there are only traces of systematic age misstatement (mostly in the form of heaping).
Because gender and age are the only covariates that can be used at a national level, we
simplify the model to include only these two traits as predictors. Finally, after verifying that
the effects of age squared and gender were statistically insignificant, the final model conditions
only on ‘true’ age of individuals. Table 3 displays estimated parameters for over and under
stating ages using the weighted sample.

ii Estimation of conditional probabilities of over(under) stating ages by 1 < n ≤ 10 years, ρox(j)
and ρux(j): We estimate a multinomial model with 9 categories that includes gender and
(true) continuous age as independent variable. The resulting estimates reveal that the effects
of gender are always statistically insignificant, that those of age show no clear pattern and, in
addition, that their magnitude is quite small in 6 out of 8 cases for overstatement models and
in 5 out of 8 contrasts for age understatement. To simplify we estimate a null model predicting
the average conditional probabilities of exaggerating (or diminishing) by n years applicable
to all ages older than 50 and both genders. The values of the predicted probabilities of over
and understating the true age are in Table 4.

Although it is now possible to compute an estimator of the target mobility matrix, Θ̂, there
remains a knotty problem of identification that cannot be resolved without additional simplifica-
tions. Suppose, for example, we seek to estimate mortality trends in a country with much lower
levels of education than in Costa Rica. Replacing Θ̂ for the true matrix in (3.3), we will obtain a
true distribution of ages but only under the very strong assumption that age misstatement is iden-
tical across countries. This contradicts accumulated knowledge showing that the severity of age
misstatement increases as levels of education drop. A less constraining assumption is to argue that
while the age pattern of misstatement is identical across countries, the levels could be different. To
express this one could think of multiplying the conditional probabilities of over and under stating
ages (or a monotonic transform of it) by some constant, say φo and φu for over and understatement
respectively. While this is a reasonable strategy it generates an additional problem, namely, that a
unique solution for equation (3.2) may no longer be possible since different combinations of φo and
φu embedded in the transition matrix could plausibly yield identical results. To circumvent this new
difficulty we propose a standard pattern of probabilities of net age overstatement as ϕSx = θox − θux
and then apply to it the conditional probabilities of overstating one’s age by n years (the ρox(j)
values defined before). Under these conditions the off-diagonal cells of the matrix defined by ϕSx ,
Θ̂S , simplify as all entries involving age understatement become zeros. This makes identification
more likely and the search for a unique solution of φno, a parameter measuring the magnitude of
the net overstatement (no) relative to the standard pattern, a more feasible enterprise.

There are two conditions required for this standard pattern to play a helpful role. The first
is that the probabilities of age overstatement always be larger than the probabilities of age under-
statement. The second is that the conditional distribution of n, the integer number of years by
which individuals exaggerate (diminish) their true age, be approximately the same among those
who over and understate ages. Figure 1 displays predicted probabilities of over and understating
ages by age, θox − θux , Figure 2 displays the differences ϕSx = θox − θux , and Figure 3 shows predicted
conditional probabilities of over stating ages by n years with 0 < n ≤ 10 or ρox(j). These figures
show that the first condition is always satisfied whereas the second is only approximately met in
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Table 3: Estimated parameters of best logistic models for age misreporting.

Variable Overreporting Coeff(se) Underreporting Coeff(se)

True age1 0.014(.0036) 0.002(.0040)
Constant -2.127(.271) -1.846(.297)
N 6290 6290

1 Regressions estimated using sampling weights. Sample includes population with true age 60 and
older and excludes ambiguous cases and foreign citizens.

Table 4: Average (conditional) probabilities of overreporting ages.

Probability1

n Overstating Understating

1 0.621 0.510
2 0.191 0.128
3 0.079 0.091
4 0.040 0.052
5 0.023 0.041
6 0.015 0.035
7 0.009 0.028
8 0.007 0.026
9 0.005 0.013
10+ 0.009 0.060

1Predicted values computed from a null multinomial logistic model with 10 categories, n=1786
(males and females). Estimation using sampling weights. Figures may not add up to 1 due to

rounding errors.

these data. However, differences are minor and are found mostly at higher values of n, where the
probabilities of over(under) stating are small. We define these two items, the pair of age-specific
differences between predicted probabilities of over and under statement (Table 3) and the associ-
ated conditional probabilities of overstating by n years (Table 4), to be the standard pattern of age
net overstatement3.

3.4 Misreporting of ages at deaths

The developments above only refer to age misreporting in population counts. However, it is known
that mortality rates are also influenced by age misreporting of ages at death (Rosenwaike, 1987).
The nature of the problem in this case is somewhat different since it is not the decedent that
declares the age at death but a kin or someone else unrelated to the decedent. A handful of studies

3The representation we used throughout suggests that patterns of age misreporting in any country is a multiple
of the standard pattern. Although this helps the algebra and statement of proofs, we cheat in our computations
and follow a roundabout algorithm. In fact, we generate new patterns of values from the standard by defining the
function logit(ϕix) = α+ βlogit(ϕSx ), set the value of β equal to 1, and then identify the level of age overstatement
in a population i by fixing α so that ϕix ∼ φoϕSx and φo is the desired level of age over reporting.
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Figure 1: Predicted probabilities of over(under) stating ages.
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Figure 2: Predicted probabilities of net overstating ages.
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Figure 3: Conditional probabilities of overstating age by n years.
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based on record linkages show that there is age misreporting of ages at death as well, albeit of lower
magnitude than that found in population counts, and that it also tends to be in the direction of
overstatement (Rosenwaike and Preston, 1984). This is confirmed by the application of indirect
techniques designed to detect age at death overstatement in a number of low and high income
countries (see below). It follows that expressions analogous to (3.1) and (3.2) must be applicable
for death counts as well. To make the problem tractable one needs an empirical approximation to
a matrix analogous to Θ but now specialized to ages at death. To our knowledge no such matrix
has ever been estimated in LAC or anywhere else and we are unaware of any national data that
could be used for such purpose. In what follows we assume that the standard age pattern of age
misstatement of death counts is identical to that of age misstatement of population counts, although
its level may be different. This assumption enables us to define the final model of age misreporting
as a set of two equations with two unknown parameters:

Πo = φnoΘ̂SΠT (3.4)

∆o = λnoΘ̂S∆T (3.5)

where ∆T and ∆O are the true and observed distributions of death counts and λno is the magnitude
of net overstatement of ages at death relative to the standard pattern. In closed populations
equations (3.4) and (3.5) are naturally (see below) related and it is unlikely that there is always
a unique solutions for φno and λno unless we either fix the value of one of them or, alternatively,
retrieve solely their ratio. A brief proof of lack of identification is in Appendix B and solutions for
empirical estimation are in section 4.2.
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4 Identification and correction of errors due to systematic age
misreporting

In this section we propose a methodology to identify and then adjust mortality statistics for age
misreporting. The methodology is only applicable when age misreporting is produced following the
model outlined in the previous section.

4.1 Identification of systematic age misreporting

A key component of our analysis is the detection and identification of patterns of age misstatement
in the population and death counts. As shown in a previous section, the distortions associated with
age misreporting in population and death counts is more complex than those involving only faulty
completeness. Detection of the problem is difficult since its manifestations are quite subtle and,
in the absence of overt and striking phenomena such as the US Black-White cross over, is likely
to remain concealed and undetected. There are two well-tested methods to identify the existence
of age over(under) statement in either population or death counts. The first method requires an
external data source with correct dates of birth or ages in a population at a particular time that
can be compared to age-specific census counts at approximately the same time. An example of
this is the utilization of Medicare data in the US, a source of information that, as a rule, contains
both population exposed and mortality data. Because Medicare data are linked to Social Security
records and these are known to register age with high precision, mortality rates computed from
Medicare data are a gold standard against which conventional mortality rates could be contrasted
and their quality evaluated (Elo et al, 2004). If one ignores the existence of a population not
covered by Medicare records, it is also feasible to link individual census records to Medicare records
and investigate more precisely the nature of patterns of age misreporting in census counts. If, in
addition, Medicare records are linked to the US National Death Index (NDI) it is then possible
to repeat the same operations and assess the quality of reporting of age at deaths. In all cases
one must assume that the coverage of population in both sources is complete or, if incomplete,
identical4. Record linkage from multiple sources such as those illustrated above has rarely been
used as it is expensive and involves resolution of complicated confidentiality issues.

A second method is less data demanding, considerably less expensive and is simple to apply
but can only reveal the existence of age misreporting in one of the two sources and provides few
clues about its nature. The procedure was proposed by Preston and colleagues (Rosenwaike and
Preston, 1984; Elo and Preston, 1994; Bhat, 1990; Grushka, 1996) and has been applied in countries
of North America, Western Europe and in Latin America (Condran et al., 1991; Grushka, 1996;
Dechter and Preston, 1991; Palloni and Pinto, 2004; Del Popolo, 2000). In a nutshell the method
consists of comparing cumulative population counts in a census in year t1 to the expected cumulative
population counts in a second population census in year t2. The computation of expected quantities
requires both an initial census opening the intercensal interval, a second census counts at time t2
closing the intercensal interval, and age specific deaths counts in the intercensal period spanning
an interval of k = (t2 − t1 + 1) years. The ratio of observed to expected population is an indicator
of age misstatement:

cmRox,[t1,t2] =
cmP ox+k,t2/cmP

o
x,t1

1− (cmDo
x,[t1,t2]

/cmP ox,t1)
(4.1)

4The assumption is more restrictive than we made it sound: if population coverage is not complete in either source,
then the subpopulations missed in each census must be random relative to their true and reported age.
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where cmP ox,t1 and cmP ox,t2 are cumulative populations over ages x and x+k in the first and second
census, respectively, and cmDo

x,[t1,t2]
is the cumulative deaths after age x during the intercensal

period. This expression is a simple contrast between two different estimates of the same underlying
quantity (population parameter), namely, the cumulative survival ratio: the denominator uses the
complement of the observed ratio of (cumulative) intercensal deaths to (cumulative) population
in the first census, whereas the numerator expresses it as the survival ratio computed from the
cumulative counts in two successive population censuses. It is useful to express (4.1) in a logarithmic
form, namely,

ln(cmRx,[t1,t2]) = ln(SNo
x,x+k)− ln(SDo

x,x+k) (4.2)

where SNo
x,x+k is the ‘survival ratio’ computed from two censuses and SDo

x,x+k is the survival ratio

computed from intercensal deaths5. In the absence of migration, age misstatement and imperfect
completeness of census and death counts, both estimators should yield the same number, the ratio
in (4.1) should be 1, and the log expression in (4.2) should be 0 for all adult ages.

To shed light on the meaning of expressions (4.1) or (4.2) and to simplify notation and termi-
nology we will speak of net age misreporting to refer to the net result of both age over and under
statement. Furthermore, because we, as well as past research, uncover systematic net age overstate-
ment of adult ages in LAC countries, we will speak of ‘age overstatement’ or ‘age overreporting’
even though we refer to the net result of age under and over reporting. In Appendix C we show
that when the assumption of absence of age misreporting is violated, we can approximate (4.2) as

ln(cmRx,[t1,t2]) ∼ ln

(
h(x+ k)

h(x)

)
−
(
g(x)

h(x)
− 1

)(
1 + ITx,x+k

)
(4.3)

where ITx,x+k is a true integrated hazard analogue between ages x and x + k (and hence strictly
positive), h(x) is an increasing function of age that depends on age overstatement of populations
and g(x) is an increasing function of age that depends only on overstatement of ages at death. Both
h(x) and g(x) are functions of the propensity to overstate and the underlying population and deaths
age distribution. Assume now that the propensity to overstate ages (of populations or deaths) is
age invariant or increases with age and that the following three conditions hold: (a) the (true) age
distribution slopes sharply downward, (b) the age distribution of deaths increases with age, and
(c) the rate of decrease of population with age is smaller that the rate of increase of deaths with
age. Under these three conditions, almost universally verified in all human populations, the ratio
h(x + k)/h(x) will always be larger than 1 and will increase with age, g(x) will always be larger
than 1 and increase with age, and the rate of increase in g(x) will exceed the rate of increase in
h(x) so that g(x) > h(x) almost everywhere in the age span. The following are possible scenarios6:

1. When there is systematic age overstatement of population counts ONLY, h(x) > 1 and
g(x) = 1, then expression (4.3) reduces to

ln(cmRx,[t1,t2]) = ln

(
h(x+ k)

h(x)

)
+ (h−1(x)− 1)(1 + ITx,x+k) < 0

5In Appendix C we provide terminology and a full justification for the use of this index.
6The impact of age misreporting predicted analytically in these scenarios has been confirmed by simulation studies

(Condran et al., 1991; Palloni and Pinto, 2004; Grushka, 1996). In section 6 we show that our simulations also accord
with analytic predictions.
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The inequality results because the positive term in the expression, that is, the distortion of the
survival ratio based on population counts, will be smaller than the negative term influenced
by the distortion in the second estimator based on intercensal death rates.

2. When there is systematic age overstatement of death counts ONLY, h(x) = 1 and g(x) > 1,
the expression becomes

ln(cmRx,[t1,t2]) = ln

(
h(x+ k)

h(x)

)
+ (g(x)− 1)(1 + ITx,x+k) > 0

and the positive sign results from the fact that all terms in the expression are positive.

3. When there is systematic overstatement of BOTH population and death counts, g(x) >
h(x) > 1, then

ln(cmRx,[t1,t2]) = ln

(
h(x+ k)

h(x)

)
+

(
g(x)

h(x)
− 1

)
(1 + ITx,x+k) > 0

because, by assumption, all terms are positive.

Before we can use the above to diagnose conditions in an empirical case, two issues must be
resolved. First, it is possible that there are empirical patterns of age overstatement of deaths and
populations that offset each other and produce ratios close to 1 even though the underlying data
are incorrect. That is, scenario (3) is such that the log of the ratio is 0 at all ages even when there
is net age overstatement. Because of this possibility, a diagnostic of observed conditions based on
the index (or the log of the index) can only detect consistency (including error consistency) of age
declaration in population and death counts, rather than suggest accuracy (Dechter and Preston,
1991). Second, throughout we assumed that both census and death counts had perfect coverage.
When one allows for defective census coverage, an identification problem is created since now we
will have

ln(cmRx,[t1,t2]) ∼ ln

(
C2

C1

)
+ ln

(
f(x+ k)

f(x)

)
−
(
C3 · g(x)

C1 · h(x)
− 1

)
(1 + ITx,x+k) (4.4)

and it is clear that we can no longer separate the role of age overstatement and completeness. In
particular, even if there is no age misreporting, expression (4.4) can yield non-zero values and mimic
increasing or decreasing patterns with age that result naturally from age overstatement alone. To
understand better the combined influence of defective coverage and age misreporting on observed
mortality rates we need to define more precisely the nature of the functions h(x) and g(x), the
nature of their dependence on patterns of age misreporting and how they interact with defective
coverage. We investigate this issue in the section below.

4.2 Correction of errors due to age misreporting

As indicated before, the main tool to detect adult age misreporting is highly sensitive to relative
completeness of census counts. Figure 4 displays the value of cmRx that one obtains when there
is no age misreporting at all but there is differential completeness in census counts. Thus, one
cannot learn much about patterns of age misreporting unless population census counts are first
adjusted. This requires to identify methods that provide robust estimates of completeness of one
census relative to the other. As we show below, the evaluation study confirms a result first noted
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Figure 4: Behavior of index of age misstatement with differential censuses.
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by Ken Hill (Hill et al., 2009) and shows that the modified Brass technique (Brass-Hill) produces
a robust estimate of C1/C2. The ratio of completeness factor is sufficient to correct the observed
values of cmRx.

Once the ratios are adjusted there remains the task of retrieving estimates of the magnitude
of net adult age net overstatement. The model developed before based on a known standard of age
net overreporting includes two parameters, λno and φno for the magnitude of population age over
and understatement, respectively. There are three different methods to estimate these parameters.

i A brute force method : it is possible, but not advisable or even necessary (see (ii) below), to
use the cumbersome but exact procedure that consists of computing the values for the vector
[cmRx=45,100] that can be generated by combinations of the known vectors [α1x=45,100] and
[α2x=45,100] and multiple pairs (λno, φno) and then choose the (unique) pair of values that best
reproduces the observed vector [cmRx=45,100]

ii Parametric method I : this method is a short cut for Method I. We used simulated data to
estimate the following relation

(cmRx)−1 = α0x + α1xλ
no + α3xφ

no (4.5)

for all values of x ≥ 45. The parameters of this relation, α0, α1 and α3, characterize the
space of solutions for the triplet (cmRx, λ

no, φno) embedded in the simulated data. As shown
below in Table 5 the fit of the model is very good and the estimated values of the constant
is always close to 1, as it should be. If the observed data is an element of the space of
solutions, that is, if the observed data is generated by one of the combinations of parameters
that spawns the simulation, it might be possible to invert the procedure in (4.5), use the
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coefficients estimated from (4.5) and compute the pair of values (λno, φno) that reproduces
the observed value cmRx − 1 for all x7. We show in Table 6 that given an observed vector of
values {cmRx=45,100} and the vectors of parameters {α1x=45,100} and {α3x=45,100} there is a
unique and best (in mean squared error sense) solution for the unknown parameters of model
(4.5) 8.

iii Parametric method II : the third method seeks to reproduce the shape of the function [cmRx=45,100]
as a function of age and then map parameters of the function onto the pairs (λno, φno) that
generated the data. It consists of fitting a hyperbola to a range of values of cmRx

cmRx = β1/(ς − age)β2 (4.6)

where ς is set equal to 769. We then use the estimated parameters of function (4.6) to predict
the pair of values (λno, φno). As we show in Table 7 the fit of the hyperbolic function to
the distorted data is very tight but the retrieval of the hidden parameters governing net age
overstatement is generally poor. This is due to under-identification: if one uses the entire
range of values attainable by λno and φno, the function cmRx=45,100 can be mapped onto
multiple pairs (λno, φno). The procedure works best when the pair of values (λno, φno) is
within a limited range (approximately [0.10-1.5]). Because of this regularity one can use
method (ii) and (iii) jointly to seek consistency: if the observed values of the parameters
λno and φno are within the identification range, then both methods should produce the same
results.

5 Evaluation study

The nature of problems generated by faulty national vital statistics and censuses is highly het-
erogeneous and vary by country, time period, age groups, gender and surely by regions. This is
complicated by the fact that there are multiple techniques or procedures, each relying on specialized
assumptions, to adjust for errors that exist in the data. Over the last two to three decades, but
mostly in the late seventies and eighties, demographers developed a large number of techniques to
adjust faulty data from censuses, vital statistics and population surveys to estimate both fertility
and mortality. There are nearly 15 different, albeit not completely independent methods, to correct
for completeness errors (but not age misreporting) of adult mortality statistics, each with its own
peculiar advantages and shortcomings, and each depending on sets of different but overlapping
assumptions.

Optimal adjustments for faulty coverage and age misreporting are unfeasible in the absence
of well-established criteria to decide which candidate techniques performs optimally and under
which conditions they do or do not do so. To assess the performance of alternative procedures and

7The constrain imposed, namely, that the observed data must be in the space of populations generated by the
simulation is crucial for in the simulation we do not use all possible values of (λno, φno) but we limit them to a rather
small range.

8Model (4.5) is best fitting in the sense that any interaction terms or higher order moments of the independent
variables do not reduce the mean squared error by a statistically significant amount.

9In cases when the values of the magnitude of age overstatement approaches the largest values allowed (close to 2
or 2.5), the function cmRx attains a point of discontinuity where the derivatives with respect to age do not exist. In
order to avoid such cases we used trial values for the parameter ς and find that, in the space of simulated populations,
ς = 76 is optimal as it always avoids points of discontinuity. This is equivalent to saying that one cannot reproduce
the function for ages above 76, a trait that is partially responsible for under identification.
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Table 5: Regression model relating index of age misstatement and parameters of age misreporting.

Age α0 α1 α2 R2

45 1.000 -0.027 -0.004 1.000
46 1.000 -0.012 -0.005 1.000
47 1.000 -0.006 -0.005 1.000
48 1.000 -0.003 -0.006 1.000
49 1.000 0.000 -0.007 1.000
50 1.000 0.002 -0.008 1.000
51 1.000 0.003 -0.009 1.000
52 1.000 0.005 -0.010 1.000
53 1.000 0.006 -0.011 1.000
54 1.000 0.008 -0.013 1.000
55 1.000 0.010 -0.014 1.000
56 1.000 0.012 -0.016 0.999
57 0.999 0.014 -0.019 0.999
58 0.999 0.017 -0.022 0.999
59 0.999 0.020 -0.025 0.999
60 0.999 0.024 -0.030 0.999
61 0.999 0.029 -0.035 0.999
62 0.999 0.035 -0.041 0.999
63 0.998 0.042 -0.048 0.999
64 0.998 0.051 -0.057 0.998
65 0.997 0.062 -0.069 0.998
66 0.996 0.076 -0.082 0.998
67 0.995 0.094 -0.099 0.997
68 0.994 0.116 -0.121 0.997
69 0.992 0.145 -0.148 0.996
70 0.990 0.183 -0.183 0.995
71 0.986 0.231 -0.228 0.995
72 0.982 0.295 -0.285 0.994
73 0.975 0.378 -0.360 0.992
74 0.966 0.490 -0.458 0.991
75 0.952 0.638 -0.586 0.989
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Table 6: Results from inverse method of age misstatement to recover parameters of age misreport-
ing.

run φno φ̂no λno λ̂no R2

1 0.000 0.061 0.350 0.370 1.000
2 0.000 0.002 0.700 0.685 1.000
3 0.000 -0.059 1.050 0.999 1.000
4 0.000 -0.118 1.400 1.313 1.000
5 0.000 -0.178 1.750 1.628 1.000
6 0.000 -0.238 2.100 1.942 1.000
7 0.000 -0.298 2.450 2.256 1.000
8 0.000 -0.358 2.800 2.571 1.000
9 0.350 0.393 0.700 0.727 1.000
10 0.350 0.392 1.050 1.078 1.000
11 0.350 0.391 1.400 1.429 1.000
12 0.350 0.390 1.750 1.780 1.000
13 0.350 0.388 2.100 2.130 1.000
14 0.350 0.387 2.450 2.481 1.000
15 0.350 0.386 2.800 2.832 1.000
16 0.700 0.710 1.050 1.067 1.000
17 0.700 0.755 1.400 1.445 1.000
18 0.700 0.801 1.750 1.823 1.000
19 0.700 0.846 2.100 2.201 1.000
20 0.700 0.892 2.450 2.579 1.000
21 0.700 0.938 2.800 2.957 1.000
22 1.050 1.013 1.400 1.393 1.000
23 1.050 1.096 1.750 1.791 1.000
24 1.050 1.179 2.100 2.189 1.000
25 1.050 1.262 2.450 2.587 1.000
26 1.050 1.345 2.800 2.985 1.000
27 1.400 1.303 1.750 1.704 1.000
28 1.400 1.416 2.100 2.117 1.000
29 1.400 1.530 2.450 2.530 1.000
30 1.400 1.643 2.800 2.943 1.000
31 1.750 1.582 2.100 2.004 0.999
32 1.750 1.720 2.450 2.427 1.000
33 1.750 1.859 2.800 2.851 1.000
34 2.100 1.851 2.450 2.292 0.999
35 2.100 2.009 2.800 2.723 1.000
36 2.450 2.110 2.800 2.569 0.998
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Table 7: Non-linear regression to recover parameters of age misreporting.

run φno φ̂no λno λ̂no R2

1 0.000 1.243 0.350 0.071 1.000
2 0.000 1.668 0.700 0.171 0.998
3 0.000 2.662 1.050 0.339 0.988
4 0.000 8.583 1.400 0.890 0.936
5 0.000 11.785 1.750 0.952 0.918
6 0.000 9.955 2.100 0.819 0.937
7 0.000 20.000 2.450 4.240 0.925
8 0.000 26.352 2.800 1.186 0.905
9 0.350 1.244 0.700 0.070 1.000
10 0.350 1.627 1.050 0.160 0.998
11 0.350 2.428 1.400 0.303 0.991
12 0.350 5.470 1.750 0.639 0.958
13 0.350 7.273 2.100 0.721 0.946
14 0.350 24.000 2.450 5.584 0.986
15 0.350 43.669 2.800 1.533 0.886
16 0.700 1.245 1.050 0.069 1.000
17 0.700 1.593 1.400 0.152 0.998
18 0.700 2.264 1.750 0.275 0.994
19 0.700 4.228 2.100 0.519 0.973
20 0.700 73.344 2.450 3.738 0.993
21 0.700 45.485 2.800 1.833 0.906
22 1.050 1.245 1.400 0.068 1.000
23 1.050 1.565 1.750 0.144 0.999
24 1.050 2.142 2.100 0.253 0.995
25 1.050 3.562 2.450 0.445 0.981
26 1.050 13.985 2.800 1.235 0.939
27 1.400 1.246 1.750 0.067 1.000
28 1.400 1.542 2.100 0.138 0.999
29 1.400 2.047 2.450 0.236 0.996
30 1.400 3.149 2.800 0.394 0.986
31 1.750 1.246 2.100 0.066 1.000
32 1.750 1.522 2.450 0.132 0.999
33 1.750 1.972 2.800 0.221 0.997
34 2.100 1.246 2.450 0.065 1.000
35 2.100 1.504 2.800 0.127 0.999
36 2.450 1.246 2.800 0.064 1.000
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choose an optimal adjustment strategy we develop an evaluation study designed to identify best
adjustments for relative completeness and age misreporting. The goal of the study is to generate
distributions of errors associated with each adjustment procedure under a diverse set of conditions
that violate the assumptions of which the procedures rely10. Thus, not only can we choose the
optimal adjustment technique under a given set of (observed) conditions, e.g. the one minimizing
some error functions, but we can also assess the magnitude of errors when a combination of these
assumptions is violated. Our evaluation study is similar to and extends the work of Hill and
colleagues (Hill et al., 2009; Hill and Choi, 2004; Hill, 2003; Hill et al., 2005).Our study includes 11
methods, considers adult age misreporting11, and produces distributions of errors associated with
each adjustment technique when (known) combinations of assumptions are violated.

The evaluation study proceeds as follows: we first simulate populations representing different
demographic profiles (stable, quasi-stable and non-stable) driven by combinations of (a) constant
fertility and mortality, (b) constant fertility and declining mortality, and (c) declining fertility
and declining mortality. We then combine these profiles with different patterns of distortions due
to faulty coverage of population and death counts and adult age misreporting. A battery of 11
techniques is deployed and in each case we compute multiple measures of performance comparing the
true parameter(s) with those retrieved by each technique. We rank the performance of techniques
for each combination of conditions violating assumptions on which the techniques rely. Finally, we
score techniques according to their sensitivity to violation of combinations of assumptions. The
optimal technique is then paired with a new procedure to adjust for age misreporting and, jointly,
they are used in an algorithm to make final adjustments to observed adult mortality rates. A
crucial issue discussed below is the order in which these techniques, one for adjustment of coverage
and one for age misreporting, must be deployed and the justification for that order.

5.1 Simulated populations: five classes of demographic profiles

We first simulate a large number of populations spanning a broad range of fertility and mortality
regimes that come close to reproducing age-specific counts of deaths and populations that would
have been observed over an interval of about 100 years in the absence of errors in the data. We
start out with a stable age distribution in single years of age, e.g., Pxt0 , x = 0, ...100, to represent an
average population in 1900 and then project it forward for 100 years using schedules of mortality,
e.g. (Sx = 0, 100), and fertility, e.g., (Fx = 15, 50) 12. We chose four different trajectories of
mortality and fertility roughly reproducing four classes of demographic transitions experienced by
Argentina, Costa Rica, Guatemala and Mexico respectively (Palloni, 1990). All four trajectories
are defined by choosing values of life expectancy at birth (E0), and Gross Reproduction Rate
(GRR) thus identifying the rate of natural increase (r) for every decade between 1900 and 2000.
With the exception of the first trajectory (corresponding to the experiences of Argentina and
Uruguay), we assume an initial stable populations with r and E0 equal to those observed in the
first population census before 1940 for each trajectory. In the case of the Argentina/Uruguay
profile we use the observed average age distribution in the population censuses within the period
1850-1910. We assume linear intra-decade changes in the two key population parameters, r and

10The investigations that follow were first documented elsewhere (Palloni and Pinto, 2000)
11Hill and colleagues did consider simulations that included limited forms of age misreporting. We augment this

aspect to capture patterns of age misreporting typically observed in LAC countries as well as the performance of a
new method to adjust for associated errors.

12Throughout we use conventional mathematical notation and when referring to discrete functions we employ
subscripts, e.g. Px, whereas for continuous functions we use the parentheses enclosing the function’s argument, e.g.
P(x).
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E0 and, additionally, that each type of demographic transition profile preserves the age patterns of
mortality and fertility. We chose the West model in the Coale-Demeny family of life tables and an
age pattern of fertility identical to the one used in the computations of the Coale-Demeny stable
population models (Coale et al., 1983). Information on the four classes of demographic transitions
used here are in Appendix A. Finally, we construct a fifth profile of a stable population with natural
rate of increase and fertility pattern equivalent to the average of LAC populations in the interval
1950-60, e.g. not yet heavily perturbed by large scale net migration as is the case in Argentina,
Brazil, Cuba, and Uruguay, or early fertility changes, as in Argentina and Uruguay.

Following routine population projection calculations we produce 505 populations and asso-
ciated distributions of births and deaths by single calendar year and single years of age. The
simulated populations represent a very broad set of experiences, from those preserving population
stability up until 1950 or thereabouts, to those shifting to quasi-stability from 1930 up to 1980, to
those with little or no stability at all from the start13.

5.2 Simulated distortions I: imperfect relative completeness of death registra-
tion

Distortions due to population or death coverage can be implemented in a straightforward matter.
We define observed population (or death) counts by age as a fraction of the simulated (true)
quantities:

P oxt1 = C1P
s
xt1

P oxt2 = C2P
s
xt2 ; t2 < t1

Do
xt = C3D

s
xt; t = t1, t1 + 1, ... ≤ t2

for x ≥ 5, where P oxt1 is the observed (distorted) population at age (x, x + 1] at time t1, P
o
xt2 is

the observed (distorted) population at age (x, x+ 1] at time t2, and Do
xt is the observed (distorted)

number of deaths in year t; P sxt1 , P
s
xt2 and Ds

xt are the simulated (true) quantities and C1, C2 and
C3 are the fractions of total events actually observed (completeness factors). The completeness
factors for censuses were set at values in the range 0.80-1.0 in intervals of 0.5 whereas the death
completeness factors varied between 0.70 and 1.0 in intervals of 0.5. Altogether we produce a total
of 875 (175*5) patterns of including distorted and true demographic profiles. These definitions are
sufficient to evaluate adjustment methods that require only one census and one to three years of
death counts centered on the census or, alternatively, those that demand as inputs two population
censuses and an array of intercensal deaths.

The above set up contains a massive assumption, namely, that completeness of both population
and death counts is age invariant. At least within the age range in which the techniques are deployed
(5-85), the assumption is unlikely to be met, particularly for population counts. To complete the
set of reasonable distortions we add two different patterns of age varying completeness generating
a total of 2,625 simulated populations. We show later, however, that as long as the difference
between maximum and minimum completeness stays below 10% of the mean value of completeness,
the variance of completeness by age does not have a strong impact on choices of techniques (Section
6).

13To compute single years of age stable populations we first generate single years of age life tables by respecting the
separator factors adopted by Coale and Demeny and the use of standard stable population expressions. The precise
routine followed is in a STATA do file available on request from authors.
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5.3 Simulated distortions III: combining age misreporting and faulty coverage

We now have all the ingredients to generate distorted populations using as benchmarks the demo-
graphic profiles described above. The defective populations were defined considering each demo-
graphic profile separately, letting C1 and C2 take on values between 0.80 and 1.0 in intervals of
0.05 whereas C3 takes on values between 0.75 and 1.0 in intervals of 0.05 and, finally, assigning
values to φno and λno ranging from 0 to 2.5 in intervals of 0.50. We use all possible combinations
of these parameters and generate a total of 6,300 populations per demographic profile (5 in all) for
a population space containing a total of 31,500 observations or populations in single years of age
traced for a total of 100 years. In addition, to test for sensitivity to violations of the assumption
of age invariant relative completeness, we add two patterns of deviations and generate a space of
94,500 populations.

5.4 Application of adjustment techniques

The next stage in the evaluation is to apply the 11 techniques to adjust for defective completeness
as well as the technique developed above to correct for age misreporting.

5.4.1 Techniques to adjust for defective completeness

The most important techniques to detect and adjust for faulty completeness evaluated in this study
are summarized in Table 814. The table identifies techniques using the names of researcher(s) who
proposed them or modified an original version. The table highlights (a) key assumptions on which
the techniques rely, and (b) information required to implement each of them. These methods share
important commonalities and all but two (Brass No 1 and Preston-Hill No 1) abstain from invoking
the assumption of stability. Yet they differ in at least one feature that, under suitable empirical
conditions, grants them an advantage over competing methods.

The key features of these techniques are the following:

• Computation of rates of growth: with two exceptions (Preston-Hill No1 and Brass) all meth-
ods require computation of age specific rates of growth in an intercensal period. Because
observed rates may be perturbed by differential census completeness, the estimates of the
main parameter (relative completeness of death registration) could be biased if the method is
sensitive to differential census completeness. A way around this is to first adjust for relative
completeness of census registration and then apply any of the techniques using adjusted age
specific rates of growth. This idea was first put forward by Hill (Hill and Choi, 2004; Hill
et al., 2009) who suggests that one of the methods listed in the table (Brass-Hill) be used to
retrieve a robust estimate of the ratio of completeness of both censuses.

• Population closed to migration: none of the methods in Table 8 works well in the presence
of significant intercensal migration. If information on net migration is available, it must be
used to adjust the observed rates of intercensal growth15

• Absence of age misreporting: all methods assume either no age misreporting or, alternatively,
age misreporting that perturbs only trivially the figures of cumulative population above adult

14We reviewed a longer list of techniques and, with two exceptions, chose to test only those that did not rely on
the assumption of stability or quasi-stability.

15Hill and colleagues investigated the effects of intercensal migration (Hill et al., 2009). In the simulations performed
here we do not include consideration of migration but its effects are partially captured via differential censuses
completeness.
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Table 8: Methods to adjust for completeness of death registration: assumptions and required data.

Method Assumptions Required Data

Brass (B) 1-2-3-4-5 B
Brass-Hill (BHill2) 2-3-4 A
Brass-Martin (BMartin3) 1-2-3-4-6 B
Bennet-Horiuchi No 1 (BH 1) 1-2-3-4 A
Bennet-Horiuchi No 2 (BH 2) 1-2-3-4 A
Bennet-Horicuhi No 3 (BH 3) 1-2-3-4 A
Bennet-Horiuchi No 4 (BH 4) 1-2-3-4 A
Bennet-Horiuchi No 5 (2SBH 4) 1-2-3-4 A
Preston-Hill No 1 (PH 1) 1-2-3-4-5 B
Preston-Hill No 2 (PH 2) 1-2-3-4 A
Preston-Bennet (PB) 1-2-3-4 A
Preston-Lahiri No 1 (PL 1) 1-2-3-4 A
Preston-Lahiri No 2 (PL 2) 1-2-3-4 A

1See appendix 5 for definitions of the four variants of Bennet-Horiuchi method and the two variants
of Preston-Lahiri method.
2BHill is a method we use to retrieve estimates of the ratio of completeness of the first relative to
the second census.
3BMartin is a variant of Brass classic method that relaxes the assumption of stability and assumes
instead past mortality decline.

KEYS FOR ASSUMPTIONS
1. Identical completeness of census counts in both census
2. Closed to migration
3. No age misreporting
4. Invariant completeness by age
5. Stability
6. Quasi stability

KEYS FOR REQUIRED DATA
A. Two censuses and intercensal deaths
B. One census and one to three years of deaths by age
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ages. This poses a conundrum: if, as asserted before, LAC population and mortality counts
are heavily affected by age overstatement, how can one expect to obtain precise estimates of
relative completeness using techniques that are vulnerable when there is age misreporting?
There are two conditions that provide a escape from this trap. The first is that the type of age
misreporting that predominates in LAC is net age overstatement. When using cumulative
populations over some age x the damage done to the target quantity by age misreporting
only depends on population flows across age x originating at younger ages. It is insensitive
to transfers of population above age x. Furthermore, the relative volume of flows, e.g. the
relative error of the target quantity, is generally low for late adulthood and early old ages (less
than 65 or 70) though it begins to mount after age 75 or so. Since in all cases computations
only require to employ observations up to ages 70 or 75, the impact of age overstatement will
be minor16.The second favorable condition that circumvents the problem is that the optimal
method (Bennett-Horiuchi No 4) is also the least sensitive to age misreporting of the type
encountered in LAC (see below).

• Age invariant relative completeness of death registration: all techniques rely on the assump-
tion that the relative completeness of death registration is age invariant. However, as we
show later, when there are mild violations of the assumption the optimal method we choose
(Bennett-Horiuchi IV) performs best.

• Estimation of life expectancy at older ages: all methods adopt ad hoc procedures to handle
the open age group. These procedures rely on exogenous computations of parameters relating
the quantity of interest, life expectancy at age 75 or 70 and selected observed quantities in
the data at hand. The relations are estimated using model life tables, stable population
expressions, numerical approximations or a combinations of all these. In the applications
implemented here we follow the methods suggested by the authors in each case. Thus, some
of the variability in performance that we uncover, albeit a small part, is due to heterogeneous
strategies to handle the open age group.

5.4.2 Techniques to adjust for age misreporting

We consider only one technique to adjust the observed data for age misreporting. As described
before, the procedure rests on two key assumptions. The first is that errors follow a known age
pattern (the Costa Rican standard). The second is the age pattern of age misreporting is the same
in the census and in vital statistics. both are simplification and a more comprehensive evaluation
study should include deviant patterns.

6 Results of the evaluation study

We now review results of applying candidate techniques for adjusting defective relative completeness
and age misreporting. We base our discussion on results from the set of simulated populations
describe before, a space of fictitious populations and deaths generated by five different demographic
regimes combined with an exhaustive set of error patterns. In section 6.1 we describe the behavior
of these techniques, that is, their effectiveness to retrieve population parameters under several
conditions: ignoring the error patterns embedded in the space of simulated populations, in subsets

16This is because even with heavy age overstatement the population at any particular age y < x, where x is below
65 or so, is a small fraction of the population above age x. These ratios increase as x increases due to exponential
decrease of population at older ages.
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of populations defined by selected underlying conditions and, finally, isolating two types of errors
that violate basic assumptions of all methods considered here, namely, age misreporting and age
dependent completeness. In section 6.2 we describe the behavior of methods to adjust for age
misreporting.

6.1 Defective completeness: evaluation using pooled simulated populations

To facilitate assessment of techniques we create six different populations subsets: (a) total or
pooled, (b) stable, (c) non-stable, (d) non-stable with no age misreporting, with defective death and
population coverage, (e) non-stable with age misreporting, incomplete death coverage and defective
but identical population coverage in the two censuses and (f) non-stable with age misreporting,
incomplete death and population coverage. Each subpopulation with incomplete population and/or
death coverage has three variants, one with constant relative completeness (of census and deaths
counts) and the others with age varying completeness.

Investigating the behavior of techniques isolating conditions that generate errors is helpful
when there is reliable external information about population stability, nature of age misreporting
and/or patterns of age relative completeness. A technique that performs optimally in the pooled
simulated population may not do so well under a specific set of conditions. The opposite situation is
also possible: a technique may not behave well on average but could be optimal under some circum-
stances. Because the source of uncertainty matters for the final choice of method, our assessment is
carried out across multiple subsets of simulated populations, each reflecting different types of errors
or conditions. We define the following six population subsets: a) pooled sample (n=31,500), b) sta-
ble populations (n=6,300), c) non-stable populations (n=25,200), d) non-stable populations with
no age misreporting but defective completeness of death and population counts (n=700) e) non-
stable populations with age misreporting, defective coverage of death counts and equal (possible
defective) coverage of population counts (n=4,320) and, finally, f) non-stable population with age
misreporting, defective death registration, defective (but unequal) population counts (n=17,280).
In each of these subsets we generate three variants, one assuming constant relative completeness
and two variants imposing two different age-dependent patterns of relative completeness17.

We evaluate the following techniques: Brass technique (Brass, 1975) modified by Hill (Hill,
1987) to compute a robust estimate of relative completeness in two population censuses and 11
techniques to estimate relative completeness of death registration: a) original Brass method (Brass,
1975) modified by Hill (Hill, 1987) and variant by Martin (Martin, 1980), b) four variants of Bennett
and Horiuchi (Bennett and Horiuchi, 1981;1984), c) one method by Preston and Bennett (Preston
and Bennett, 1983), d) two different methods by Preston and Hill (Preston and Hill, 1980), and e)
two variants of Preston and Lahiri (Preston and Lahiri, 1991).

The assessment focuses on the mean proportionate (absolute) errors for two population pa-
rameters, the ratio of completeness of first to second census coverage, ρc=C1/C2 and the relative
completeness of death registration, ρd = (C3/(.5 ∗ (C1 + C2)). Tables 9–11, panels A through
panel F display the mean of the proportionate absolute error for each of the six populations sub-
sets defined above. The errors in each population subset s, s = 1, 2...6, are Ξd

s =
∑j=Ks

j=1 εdsj and

Ξc
s =

∑j=Ks
j=1 εcsj where εdsj =| ρ̂dsj−ρdsj | /ρdsj , εcsj =| ρ̂csj−ρcsj | /ρsj , ρc and ρd are defined as before,

ρ̂dsj and ρ̂csj are estimates, and the summations are over all simulated populations j in each of six

17The two functions for age dependent census completeness are assumed to hold in both censuses and are defined
as follows: (a) scenario 1: C1= 0.75 if age [15-34] and C1= 0.85 elsewhere; C2=0.85 if age [15-34] and C2= 0.95
elsewhere; C3= 0.80 if age [15-34] and C3= 0.85 elsewhere; (b) scenario 2: C1= 0.85 if age [15-34] and C1= 0.75
elsewhere; C2= 0.95 if age [15-34] and C2= 0.85 elsewhere; C3= 0.85 if age [15-34] and C3= 0.80 elsewhere.
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subsets. Naturally, different error metrics yield different ranking of methods but the measure we
use is the preferred one in most applications of this kind.18

The six panels of Tables 9–11 display the mean of the proportionate absolute error for each
of the six populations subsets defined above. Table 9 refers to simulations with constant relative
completeness by age and Tables 10 and 11 reflect results using two different patterns of age varying
relative relative completeness. The errors in each population subset s, s = 1, 2...6, are Ξd

s =∑j=Ks
j=1 εdsj and Ξc

s =
∑j=Ks

j=1 εcsj , where εdsj =| ρ̂dsj − ρdsj | /ρdsj , εcsj =| ρ̂csj − ρcsj | /ρsj , ρc and ρd are

defined as before, ρ̂dsj and ρ̂csj are estimates, and the summations are over all simulated populations
j in each of six subsets. Naturally, different error metrics yield different ranking of methods but
the measure we use is the preferred one in most applications of this kind19.

18The figures in Tables 9–11, panel A through panel F are computed using a subset of rather benign patterns of
distortions as they exclude values of completeness lower than 0.7 and differences between completeness of successive
censuses higher than 0.10.

19We emphasize that the figures in Tables 9–11, are computed on a subset of rather benign patterns of distortions
as they exclude values of relative completeness lower than 0.7 and differences between completeness of successive
censuses higher than 0.10.
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Search for an optimal estimate is carried out considering all prior information available and
the following are general rules:

i. In the absence of any knowledge whatsoever about errors or deviations from stability, the
search for best method should be concentrated on the pooled sample subset in Tables 9–11,
panel A.

ii. When exogenous information suggests stability and not much else, the search should focus
on the subset of stable populations in Tables 9–11, panel B. Instead, when there is prior
empirical data confirming violation of stability, for example past shifts in fertility regime, but
one can be agnostic about completeness and age misreporting, the search of optimal method
should concentrate on the population subset in Tables 9–11, panel C.

iii. When in addition to lack of stability there is evidence of defective coverage of population and
death counts but no suggestion of significant net age overstatement at adult ages, the search
should shift to the subset in Tables 9–11, panel D.

iv. When the researcher suspect a scenario like in (iii) above but, in addition, there is evidence of
age misreporting, identification of optimal method should be done using Tables 9–11, panel
E.

v. Finally, in cases scenario (iv) is most reasonable and one can establish that completeness of
two censuses is (possibly) defective but equal in both censuses, identification of the optimal
choice must be done with Tables 9–11, panel F.

The results displayed in Tables 9–11, panels A through F contain a number of salient char-
acteristics. First, as already suggested in the work by Hill and colleagues, Brass’s methods to
estimate relative completeness of the two censuses is uniformly good, regardless of population sub-
set. Second, with the exception of Brass methods, the magnitude of errors are larger when census
coverage is defective as long as completeness is NOT the same in both censuses. This is because
all methods except Brass’s rely on direct computations of age specific growth rates from the ob-
served data, a quantity that will be in error when there is different coverage errors in two successive
censuses. Indeed, the performance of these methods improves substantially when there is accurate
census coverage or, equivalently, when coverage is the same in both censuses (Table 9, panel D).
Fourth, age misreporting affects the accuracy of all estimates but substantially more so in some
cases (Brass’s methods and the second variant of Preston-Hill) than in others (Bennett-Horiuchi all
variants). Fifth, the magnitude of errors obtain when relative completeness is age dependent (last
two columns of panels A-F in Tables 9–10) varies sharply by technique but, in general, are lowest
in the method by Bennett-Horiuchi.

The most important inference from this evaluation exercise is as follows: if one excludes popu-
lation subsets with defective census completeness, the optimal choice is always one of the variants of
Bennett-Horiuchi method followed by the two methods proposed by Brass, irrespective of violations
of stability assumptions or age misreporting. This suggests the following strategies:

i. In the absence of exogenous information about the difference in completeness between the
two census and if the assumption of age invariant completeness holds, use Brass method;

ii. In the absence of exogenous information, whether or not age dependence of relative com-
pleteness is suspected, use a two stage procedure: first estimate relative completeness of
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census enumeration using Brass’ method, adjust intercensal rates of growth and then apply
Bennett-Horiuchi method.

We use both strategies in LAC and when the difference between estimates was less than 0.05 we
compute the average of Brass and Bennett Horiuchi estimates. When their difference exceeded 0.05
we chose the estimate from strategy (ii)20.

6.2 Defective age reporting

Do the procedures to identify and adjust for age misreporting produce robust estimates of the true
population parameters? To answer this question we select the subset of simulated populations
with age misreporting and defective completeness, adjusted for completeness following strategy (ii)
above, we identify the existence of age misreporting, and then correct for it using techniques (ii)
in section 4.2. Tables 5 through 7 display the main results. First, Table 5 contains parameters
associated with expression (4.5) and reveals that the fit is almost perfect and that the estimated
constant is unit, as it should be. Table 6 shows that when the procedure is reversed and we regress
cmRx on the vectors α1x=45,100 and α2x=45,100 the errors of estimates are trifle. This suggests that
if an observed population belongs to the space of simulated populations, we can retrieve estimates
of the magnitude of age net over-reporting that are highly accurate by simply using the estimated
relation between the observed cmRx and estimates α1x=45,100 and α2x=45,100 from the simulated
populations.

7 Discussion: the issue of uncertainty

By an large the methods to adjust mortality statistics reviewed here perform satisfactorily provided
the key assumptions on which they rest are concordant with the empirical conditions that produce
the data. This is most unlikely to be the case always or even frequently for one single assumption
and much less for combinations of assumptions. The conventional strategy has invariably been
to scrutinize alternative estimates and then settle for one based on explicit or, more frequently,
implicit reasoning and judgments about concordance of assumptions and observables. We believe
we can improve upon this practice.21

The evaluation study generates a superpopulation of errors associated with the application
of each technique under conditions that violate to different degrees one or several of the cardinal
assumptions on which they rely. It follows that for each technique we can define precisely the
magnitude of error—however measured— associated with conditions that depart from the combi-
nation of assumptions in ex ante known ways. In our simulation the base universe of populations
was generated by combining different demographic parameters (levels and patterns of fertility and
mortality) thus producing multiple instances where one could alter conditions imparting changes
that violate assumptions(lack of stability, adult migration, variable completeness, age misreporting
that departs from assumed patterns etc.). As a consequence, we have all the information needed
to define the frequency distribution of errors associated with one technique under one set of simu-
lated conditions. And, in particular, one can define the probability that a singular technique will

20It is important to note that when relative completeness is age dependent, Bennett-Horiuchi is mean optimal,
in the sense that the weighted average of relative death completeness of observed data will be best estimated by
Bennett-Horiuchi methods. It does not mean that, once applied, the adjusted mortality rates (and derived function
of the life table) will also be best estimates. None of the methods we include in our evaluation can escape from the
assumption of constant relative completeness and, therefore, we can only aspire to find a mean optimal candidate.

21An application of the ideas described here is in Palloni and Beltrán-Sánchez (2016).
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produce an error less than, say 5, percent under a given set of well defined (simulated) conditions
that possibly depart from assumptions.

Now, assume that in any population we know the probability that the historical conditions
that produced the data match one of the multiple sets of simulated conditions.22 It would then
be possible to compute the unconditional probability that, in that particular population, a given
technique will produce an error of less than 5 percent. If one repeats this for all candidate techniques
than can be deployed, we will have alternative values of the true parameters and known magnitude
of uncertainty associated with each of them. This is sufficient knowledge to analyze the data
incorporating uncertainty-rather than ignoring it by a sleigh of hand choosing the value discerned,
however convincingly, to be the true parameter. The outcome of this is that target parameters such
as the rate of decline of mortality rates for a given age group, the effects of income on mortality
changes, the fraction of life expectancy improvements associated with income changes, will be
associated with bounds of uncertainty and the standard errors of these estimates will fall within a
range rather than being point estimates. This may be less pleasing than providing a single value
(with associated standard errors) but it is also a strategy that fully admits levels of ignorance.
Since some of the estimates could be used for projections and forecasts, it stands to reason that
the above procedure will lead to probabilistic forecasts by virtue of uncertainty of estimates not
just because of uncertainty about future trends.

22These probabilities can be constructed from expert judgments.
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A Appendix. Definition of demographic profiles for the simula-
tion

Five different master populations were created, one stable and four nonstable populations. In each
case we start with a stable population in 1900 and we compute yearly populations until the year
2000. The age distribution is in single years of age but for totals (not by gender).

The four non-stable populations were generated following approximately the mortality and
fertility schedules for Costa Rica, Mexico, Guatemala and Argentina, Uruguay for the period 1900-
2000.

A.1 Stable population

The stable population is generated using constant values for GRR = 3.03 and E(0) = 45 for the
period 1900 and 2000 with a natural rate of increase r = 0.025.

A.2 Non-stable populations (a)(b)(c)

I II III IV

Year E(0) GRR r E(0) GRR r E(0) GRR r E(0) GRR r

1900 34.70 3.60 0.05 26.30 6.20 0.04 22.10 5.80 0.03 45.40 1.80 0.02
1910 35.10 3.40 0.05 29.60 5.70 0.04 25.40 5.70 0.03 48.90 1.70 0.02
1920 35.10 3.20 0.05 32.90 5.20 0.04 28.70 5.20 0.03 51.30 1.60 0.02
1930 42.20 2.60 0.05 36.20 4.70 0.04 32.00 4.70 0.03 54.40 1.50 0.02
1940 46.90 2.50 0.05 41.80 4.20 0.04 37.40 3.80 0.03 59.60 1.40 0.02
1950 55.60 2.40 0.05 50.70 3.40 0.04 40.20 3.50 0.03 66.30 1.30 0.02
1960 62.60 2.30 0.05 58.50 3.30 0.04 47.00 3.30 0.03 68.40 1.40 0.02
1970 65.40 2.10 0.05 62.60 3.20 0.04 53.90 3.10 0.03 68.80 1.50 0.02
1980 72.60 1.70 0.05 67.70 2.10 0.04 58.20 3.00 0.03 71.00 1.30 0.02
1990 75.70 1.50 0.05 71.50 1.50 0.04 62.60 2.60 0.03 72.80 1.20 0.02
2000 77.30 1.30 0.05 73.40 1.20 0.04 65.90 2.20 0.03 75.20 1.10 0.02

(a) Non Stable population I, II, III and IV follow the patterns of mortality and fertility between
1900 and 2000 assessed with current (Adjusted data) for Costa Rica, Mexico, Guatemala and
Argentina/Uruguay respectively.

(b) Population parameters were directly estimated for each decade and then interpolated lin-
early within each decade to obtain yearly values.

(c) The initial population age distribution for I, II and III correspond to the stable population
associated with parameter values in 1900. In case IV the initial population corresponded to the
average of census populations closest to 1900.

B Appendix. Proof of lack of identification of parameters of net
age overstatement

Using the same notation as in the text we have

ΠT = (1/φno) ˆ[Θ
S

]−1ΠO

and

∆T = (1/λno)[Θ̂S ]−1∆O.
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In a closed population the relation between the vectors for populations in two successive cen-
suses and the vector of intercensal deaths is:

ΠT
t+k = ΠT

t + ∆T
[t,t+k] . (B.1)

Using the first two expressions in (B.1) yields:

(1/φno) ˆ[Θ
S

]−1ΠO
t+k = (1/φno) ˆ[Θ

S
]−1ΠO

t − (1/λno)[Θ̂S ]−1∆O
[t,t+k] . (B.2)

From (B.2) we see that only (φno/λno) is identifiable with the available information.

C Appendix. Behavior of the age misreporting index cmRo
x,[t1,t2]

The expression of the age misreporting index is

cmRox,[t1,t2] =
cmP ox+k,t2/cmP

o
x,t1

1− (cmDo
x,[t1,t2]

/cmP ox,t1)

a ratio of two different estimators of the same quantity, namely the cumulative probability of
survival of the population aged x and over at time t1 to age (x + k) and over at time t2. Use of
cumulative quantities in the index is an important prerequisite since it minimizes the impact of
age misreporting within the bounds of the cumulative quantities. Thus, erroneous transfers over
age x do not affect population counts at ages x and over. These quantities are influenced only
by transfers from ages younger than x into ages x and above or by transfers from ages x and
above to ages younger than x. Admittedly, however, use of cumulative quantities complicates the
algebra and muddles interpretation. To circumvent this difficulty and preserving the same set up
and assumptions defined in the text, we redefine the expression for single years of age to obtain:

Rox,[t1,t2] =
P ox+k,t2/P

o
x,t1

1− (Dx,[t1,t2]/P
o
x,t1

)

or the ratio of a conventional survival ratio computed from two successive population counts to
the survival ratio computed from the complement of a measure of the conditional probability of
dying between the two censuses. If the population is stationary, the numerator is simply the ratio
Lx+k/Lx in a life table and the denominator is the complement of the probability of dying in the
intercensal period, namely, 1− (1− Lx+k/Lx). From this it follows that,

ln
(
Rox,[t1,t2]

)
∼ −INx,x+k − ln

(
1−

[
1− exp

(
−IDx,x+k

)])
(C.1)

where IDx,x+k and INx,x+k are estimators of the integrated hazards between x and x + k consistent
with the survival ratios in the denominator and numerator respectively. When the population is
closed to migration, there is perfect coverage and no net age overstatement, expression (C.1) equals
0 as both estimators of the integrated hazards are identical. When there is age overstatement
expression (C.1) becomes

ln
(
Rox,[t1,t2]

)
∼ ln

(
h(x+ k)

h(x)

)
− INx,x+k − ln

(
1− g(x)

h(x)

[
1− exp(−IDx,x+k)

])
(C.2)

where h(.) and g(.) are defined in the text and refer to increasing functions of age that reflect age
overstatement of ages of population and deaths respectively. When these functions are equal to
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1, there is neither population nor death age overstatement or, if there is, their effects cancel each
other out. Expression (C.2) can be simplified if we expand the inner log expression in a Taylor
series around a value of f(x) = g(x)/h(x) = 1:

ln
(
Rox,[t1,t2]

)
∼ ln

(
h(x+ k)

h(x)

)
− INx,x+k +

(
g(x)

h(x)
− 1

)
(1 + IDx,x+k) + IDx,x+k (C.3)

an expression that reduces to 0 when h(x+ k)/h(x) =1 and f(x) = 1.
Expression (C.3) is the analytic support for inferences regarding the effects of age overstate-

ment on the index of age misstatement cmRx,[t1,t2] (see text). Deviations from the assumption
of population stationarity introduce only minor changes in the algebra but leave the implica-
tions of expression (C.3) intact. However,when, as required by the original index, we restore
the cumulative functions, the algebra becomes intractable even in the case of a stationary pop-
ulation. The way out of this conundrum is to think of the cumulative ratios as functions not
of the exact integrated hazards, as in expressions (C.1)-(C.3) but rather as expressions of mean
values of corresponding integrated hazards. Thus, in a stationary population, the survival ra-
tio of the cumulative populations at ages x and x + k is the ratio T (x + k)/T (x) which can be
written as

∫∞
x+k[exp(−

∫ y
0 µ(s)ds)]dx/

∫∞
x [exp(−

∫ y
0 µ(s)ds)]dx. Using the mean value theorem in

numerator and denominator leads to the approximation exp(−
∫ x+k+i′
x+i µ(s)ds) or, more generally,

exp(−
∫ x∗∗
x∗ µ(s)ds) where x∗ > x and x∗∗ > x+ k. Upon taking logs in this expression we retrieve

an integrated hazard that expresses integration of the force of mortality over two ages that are not
fixed ex ante (such as x and x + k) but, rather, between limits (ages) that are a function of the
underlying force of mortality. For this reason, in the text, we use the symbols INx,x+k and IDx,x+k
associated with cumulative quantities as “integrated hazard analogues”.
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